
THE STRUCTURE AND SYNTHESIS OF OLEUROPEIC ACID Raphael Mechoulam, Naftali Danieli and Yehuda Mazur The Daniel Sieff Research Institute The Weizmann Institute of Science, Rehovoth, Israel (Received 8 June 1962)

WE wish to report that oleuropeic acid¹ possesses structure Ia (p-ment-lene-7-oic acid).

Oleuropeic acid was isolated by Shasha and Leibowitz¹ from the hydrolysate of a bitter principle² present in the leaves, unripe fruit and root bark of the olive tree (<u>Olea europaea var. soori</u>). Oleuropeic acid was assigned¹ structure II, mainly on the basis of a sulphur dehydrogenation which reportedly gave 2,6-dimethyl-benzoic acid, although no direct comparison with an authentic sample was mentioned.

¹ B. Shasha and Y. Leibowitz, <u>J. Org. Chem. 26</u>, 1948 (1961); B. Shasha and Y. Leibowitz, <u>Nature, Lond.</u> <u>184</u>, 2019 (1959).

² The bitter principle called oleuropein by these authors is undoubtedly different from the oleuropein, the structure of which was recently elucidated: L. Panizzi, M.L. Scarpati and G. Oriente, <u>Gazz. Chim. Ital. 90</u>, 1449 (1960); H.C. Beyerman, L.A. van Dijck, J. Levisalles, A. Melera and W.L.C. Veer, <u>Bull. Soc. Chim.</u> 1812 (1961).

No.16

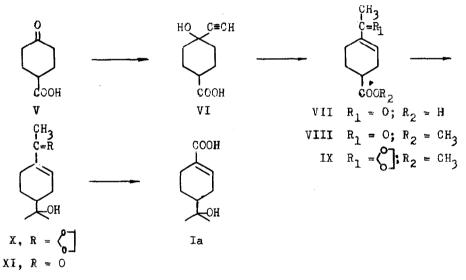
We felt that structure II is not sufficiently corraborated, especially since its carbon skeleton is unusual for the monoterpenoid class and therefore a reinvestigation of the problem seemed justified.

Following the published extraction and purification procedure, we succeeded in obtaining oleuropeic acid, m.p. 155-158°, $[a]_n$ -100°, identical with the published values. Further purification was achieved by converting the acid into its methyl ester, chromatography on alumina and hydrolysis back to the free acid, $C_{10}H_{16}O_3$, m.p. 164 - 166°, $[a]_D$ -125°, v_{max} (in KBr) 1695 cm⁻¹ (unsaturated carboxylic acid), 1655 cm⁻¹ (s) (conjugated double bond), $\lambda_{\max}^{\text{EtOH}}$ 218 m μ (¢ 10.800), two active hydrogens (Zerewitinoff determination). Methyl oleuropate, C, H1803, Ib, was obtained as an oil, b.p. 112-114°/0.5 mm, $[\alpha]_{D}$ -104°, $n_{D}^{28^{\circ}}$ 1.5015, λ_{max}^{EtOH} 218 (ϵ 12.800), v_{max} (in CHCl₃) 3580 cm⁻¹ (hydroxyl group), 1705 cm⁻¹ (α , β unsaturated ester), 1655 cm^{-1} (s) (conjugated double bond). The NMR spectrum of Ib (in CDCl₂) showed the presence of one olefinic proton at 2.98 τ (split to an unresolved complex) and six protons of two methyl groups as a single peak at 8.80 au, indicating that these two methyl groups are structurally similar. No protons of a vinylic methyl group could be observed. Neither was the presence of a proton a to a hydroxyl group indicated. The non-splitting of the common signal of the methyl groups shows that they possess no a hydrogen. In addition their rather low value could be attributed to the deshielding effect of an a hydroxyl group.

The hydroxyl group does not undergo acetylation with acetic anhydride privation is not oxidized with "Jones' reagent".³ This supports the argument for its tertiary character. On catalytic hydrogenation (PtO₂/EtOH) Ia absorbs 1 mole of hydrogen, yielding an optically inactive product, m.p.

710

³ K. Bowden, I.M. Heilbron, E.R.H. Jones and B.C.L. Weedon, <u>J. Chem. Soc.</u> 39 (1946).


124-140°, probably a mixture of epimers.

Sulphur dehydrogenation yielded a crystalline mixture from which two compounds were isolated by chromatography. The less polar compound, m.p. 115-116°, is identical with cumic acid (IIIa) while the more polar one is identical with l'-hydroxy-cumic acid (IIIb). Both compounds were compared directly with authentic samples.^{4,5}

Boiling of Ia with 10 per cent sulphuric acid resulted in dehydration giving the dienoic acid IV, m.p. 130-132°, λ_{max}^{EtOH} 298 mµ (¢ 7500).

These results are compatible with structure Ia only.

We have synthesized racemic oleuropeic acid by the sequence described in Fig. 1.

Cyclohexanone-4-carboxylic acid (V) was condensed with potassium acetylide in t-butanol to give VI, m.p. 144-145°, $C_{9}H_{12}O_{3}$, which was rearranged to VII, $C_{9}H_{12}O_{3}$ m.p. 117-118°, λ_{max}^{EtOH} 237 mµ (ϵ 15,700) by refluxing $\frac{1}{4}$ M.S. Newman and E.K. Easterbrook, <u>J. Amer. Chem. Soc.</u> <u>77</u>, 3763 (1955). ⁵ O. Widmann and J.A. Bladin, <u>Ber. Dtsch. Chem. Ges.</u> <u>19</u>, 583 (1886). in formic acid. Esterification gave the oily VIII, which ketalized with ethylene glycol and p-toluene-sulphonic acid in benzene to IX, $C_{12}H_{15}O_4$, b.p. 105-110°/1 mm, $n_D^{27^0}$ 1.4870. Reaction of IX with excess methyl magnesium iodide gave X, which on treatment with p-toluene-sulphonic acid in acetonewater was converted into the oily XI, λ_{max}^{EtOH} 233 m μ (ϵ 14,200). Oxidation with sodium hypoiodite in water gave Ia, m.p. 153-155°, identical with oleuropeic acid (comparison of the infra-red spectra). A mixture of the natural product (m.p. 164-166°) with the synthetic racemic acid melted at 159-162°.

While this manuscript was in preparation Herz and Wahlborg⁶ published the conversion of $\beta(-)$ pinene into Ia and IV. Professor Herz kindly supplied us with samples of these compounds. The identity of the dienoic acid (IV) was proved by direct comparison (m.m.p. and infra-red spectra). Ia (m.p. 154-156°) from $\beta(-)$ pinene has a rotation of $[a]_D$ -68.7°⁷ and seems to be optically impure.⁸ A mixture of it with natural oleuropeic acid melted at 159-162°, whereas a mixture with the racemic synthetic Ia melted at 153-155°. The infra-red spectra of Ia from $\beta(-)$ pinene and that of oleuropeic acid were superimposable.

The absolute configuration of oleuropeic acid is determined as that of L-glyceraldehyde by its relationship to $\beta(-)$ pinene.^{6,9}

<u>Acknowledgements</u> - We are indebted to Prof. F. Sondheimer for his interest, to Prof. Herz for samples of Ia and IV and to Dr. Y. Shvo for the NMR determinations.

⁶ W. Herz and H.J. Wahlborg, <u>J. Org. Chem.</u> <u>27</u>, 1032 (1962).

⁷ Private communication by Professor Herz.

⁸ The $\beta(-)$ pinene used as starting material is reported as optically impure and further partial racemization might well have occurred in the course of the conversion.

⁹ G. Austerweil, <u>Bull. Soc. Chim.</u> <u>39</u>, 1643 (1926); A.J. Birch, <u>Ann. Rep.</u> <u>Chem. Soc.</u> <u>47</u>, 192 (1950).